Forward And Inverse Kinematics

Dr. Kurtuluş Erinç Akdoğan kurtuluserinc@cankaya.edu.tr

Introduction

- □ In this chapter we consider the **forward** and **inverse** kinematics for serial link manipulators.
- Kinematics describes the motion of the manipulator without consideration of the forces and torques causing the motion.
- Forward kinematics:
 - joint variables -> position and orientation of the end-effector
- Inverse kinematics:
 - position and orientation of the end-effector -> joint variables

Figure 3.1: A Coordinate Frame is attached rigidly to each link

Three-link cylindrical manipulator

Three-link cylindrical manipulator

Three-link cylindrical manipulator

Procedure Based On The D-H Convention

- **Step 1:** Locate and label the joint axes z_0, \ldots, z_{n-1} .
- Step 2: Establish the base frame. Set the origin anywhere on the z_0 -axis. The x_0 and y_0 axes are chosen conveniently to form a right-hand frame. For i = 1, ..., n - 1, perform Steps 3 to 5.
- Step 3: Locate the origin O_i where the common normal to z_i and z_{i-1} intersects z_i . If z_i intersects z_{i-1} locate O_i at this intersection. If z_i and z_{i-1} are parallel, locate O_i in any convenient position along z_i .
- **Step 4:** Establish x_i along the common normal between z_{i-1} and z_i through O_i , or in the direction normal to the $z_{i-1} z_i$ plane if z_{i-1} and z_i intersect.
- **Step 5:** Establish y_i to complete a right-hand frame.

- Step 6: Establish the end-effector frame $o_n x_n y_n z_n$. Assuming the *n*-th joint is revolute, set $z_n = a$ along the direction z_{n-1} . Establish the origin O_n conveniently along z_n , preferably at the center of the gripper or at the tip of any tool that the manipulator may be carrying. Set $y_n = s$ in the direction of the gripper closure and set $x_n = n$ as $s \times a$. If the tool is not a simple gripper set x_n and y_n conveniently to form a right-hand frame.
- **Step 7:** Create a table of link parameters a_i , d_i , α_i , θ_i .
 - $a_i =$ distance along x_i from O_i to the intersection of the x_i and z_{i-1} axes.
 - d_i = distance along z_{i-1} from O_{i-1} to the intersection of the x_i and z_{i-1} axes. d_i is variable if joint *i* is prismatic.
 - α_i = the angle between z_{i-1} and z_i measured about x_i (see Figure 3.3).
 - θ_i = the angle between x_{i-1} and x_i measured about z_{i-1} (see Figure 3.3). θ_i is variable if joint *i* is revolute.
- Step 8: Form the homogeneous transformation matrices A_i by substituting the above parameters into (3.10).
- Step 9: Form $T_n^0 = A_1 \cdots A_n$. This then gives the position and orientation of the tool frame expressed in base coordinates.

Ambiguities in defining DH frames

- frame₀: origin and x₀ axis are arbitrary
- frame_n: z_n axis is not specified (but x_n must be orthogonal to and intersect z_{n-1})
- positive direction of z_{i-1} (up/down on joint i) is arbitrary
 - choose one, and try to avoid "flipping over" to the next one
- positive direction of x_i (on axis of link i) is arbitrary
 - we often take x_i = z_{i-1} × z_i when successive joint axes are incident
 - when natural, we follow the direction "from base to tip"
- if z_{i-1} and z_i are *parallel*: common normal not uniquely defined
 O_i is chosen arbitrarily along z_i, but try to "zero out" parameters
- if z_{i-1} and z_i are *coincident:* normal x_i axis may be chosen at will
 - again, we try to use "simple" constant angles (0, $\pi/2$)
 - this case may occur only if the two joints are of different kind (P & R)

Spherical Wrist

Spherical Wrist

Euler Angle Representation

Euler Angle Representation

$$\begin{aligned} R_{ZYZ} &= R_{z,\phi} R_{y,\theta} R_{z,\psi} \\ &= \begin{bmatrix} c_{\phi} & -s_{\phi} & 0\\ s_{\phi} & c_{\phi} & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{\theta} & 0 & s_{\theta}\\ 0 & 1 & 0\\ -s_{\theta} & 0 & c_{\theta} \end{bmatrix} \begin{bmatrix} c_{\psi} & -s_{\psi} & 0\\ s_{\psi} & c_{\psi} & 0\\ 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} c_{\phi} c_{\theta} c_{\psi} - s_{\phi} s_{\psi} & -c_{\phi} c_{\theta} s_{\psi} - s_{\phi} c_{\psi} & c_{\phi} s_{\theta}\\ s_{\phi} c_{\theta} c_{\psi} + c_{\phi} s_{\psi} & -s_{\phi} c_{\theta} s_{\psi} + c_{\phi} c_{\psi} & s_{\phi} s_{\theta}\\ -s_{\theta} c_{\psi} & s_{\theta} s_{\psi} & c_{\theta} \end{bmatrix} \end{aligned}$$

Spherical Wrist

$$\begin{array}{rcl} T_6^3 &=& A_4 A_5 A_6 \\ &=& \left[\begin{array}{ccc} R_6^3 & o_6^3 \\ 0 & 1 \end{array} \right] \\ &=& \left[\begin{array}{ccc} c_4 c_5 c_6 - s_4 s_6 & -c_4 c_5 s_6 - s_4 c_6 & c_4 s_5 & c_4 s_5 d_6 \\ s_4 c_5 c_6 + c_4 s_6 & -s_4 c_5 s_6 + c_4 c_6 & s_4 s_5 & s_4 s_5 d_6 \\ -s_5 c_6 & s_5 s_6 & c_5 & c_5 d_6 \\ 0 & 0 & 0 & 1 \end{array} \right] \end{array}$$

Cylindrical Manipulator with Spherical Wrist

7	$r_{6}^{0} =$	$\begin{bmatrix} r_{11} & r_{12} & r_{13} & d_x \\ r_{21} & r_{22} & r_{23} & d_y \\ r_{31} & r_{32} & r_{33} & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$
r_{11}	L =	$c_1c_4c_5c_6 - c_1s_4s_6 + s_1s_5c_6$
r_{21}	L =	$s_1c_4c_5c_6 - s_1s_4s_6 - c_1s_5c_6$
r_{31}	L =	$-s_4c_5c_6 - c_4s_6$
r_{12}	$_{2} =$	$-c_1c_4c_5s_6 - c_1s_4c_6 - s_1s_5c_6$
r_{22}	$_{2} =$	$-s_1c_4c_5s_6 - s_1s_4s_6 + c_1s_5c_6$
r_{32}	$_{2} =$	$s_4c_5c_6 - c_4c_6$
r_{13}	3 =	$c_1 c_4 s_5 - s_1 c_5$
r_{23}	3 =	$s_1c_4s_5 + c_1c_5$
r_{33}	3 =	$-s_4s_5$
d_{s}	c =	$c_1c_4s_5d_6 - s_1c_5d_6 - s_1d_3$
d_y	, =	$s_1c_4s_5d_6 + c_1c_5d_6 + c_1d_3$
$d_{\tilde{z}}$	= z	$-s_4s_5d_6 + d_1 + d_2$

Stanford Manipulator

This manipulator is an example of a spherical (RRP) manipulator with a spherical wrist.

$$\begin{array}{c} \begin{array}{c} & & & \\ & &$$

SCARA Manipulator

The Epson E2L653S SCARA Robot

The SCARA (Selective Compliant Articulated Robot for Assembly).

$$\begin{array}{c} x_{1} \\ \theta_{2} \\ y_{1} \\ x_{1} \\ y_{2} \\ x_{2} \\ y_{2} \\ x_{2} \\ y_{3} \\ y_{4} \\ y_{4} \\ z_{3}, z_{4} \end{array} = \begin{bmatrix} \operatorname{Link} \begin{vmatrix} a_{i} & a_{i} & a_{i} & | a_{i} & | \theta_{i} \\ 1 & | a_{1} & 0 & 0 & | \theta^{*} \\ 2 & | a_{2} & | 180 & 0 & | \theta^{*} \\ 3 & | 0 & 0 & | d^{*} & | 0 \\ 4 & | 0 & 0 & | d^{*} & | 0 \\ 0 & 0 & | d^{*} & | 0 \\ 4 & | 0 & 0 & | d^{*} & | 0 \\ 0 & 0 & 0 & | d^{*} & | 0 \\ 1 & | a_{1} & | 0 & | 0 & | \theta^{*} \\ 3 & | 0 & 0 & | d^{*} & | 0 \\ 4 & | 0 & 0 & | d^{*} & | 0 \\ 4 & | 0 & 0 & | d^{*} & | 0 \\ 1 & | 1 & | a_{1} & | 0 & | 0 & | \theta^{*} \\ 1 & | a_{2} & | 180 & | 0 & | \theta^{*} \\ 3 & | 0 & 0 & | d^{*} & | 0 \\ 4 & | 0 & | 0 & | d^{*} & | 0 \\ 4 & | 0 & | 0 & | d^{*} & | 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{array}$$

$$A_{1} = \begin{bmatrix} c_{1} & -s_{1} & 0 & a_{1}c_{1} \\ s_{1} & c_{1} & 0 & a_{1}s_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} c_{2} & s_{2} & 0 & a_{2}c_{2} \\ s_{2} & -c_{2} & 0 & a_{2}c_{2} \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} c_{4} & -s_{4} & 0 & 0 \\ s_{4} & c_{4} & 0 & 0 \\ 0 & 0 & 1 & d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

INVERSE KINEMATICS

Stanford Manipulator With A Spherical Wrist

$$\begin{array}{c} \begin{array}{c} & & & \\ & &$$

To find the corresponding joint variables θ_1 , θ_2 , d_3 , θ_4 , θ_5 , and θ_6 we must solve the following simultaneous set of nonlinear trigonometric equations:

> $c_1[c_2(c_4c_5c_6 - s_4s_6) - s_2s_5c_6] - s_1(s_4c_5c_6 + c_4s_6) = 0$ $s_1[c_2(c_4c_5c_6 - s_4s_6) - s_2s_5c_6] + c_1(s_4c_5c_6 + c_4s_6) = 0$ $-s_2(c_4c_5c_6-s_4s_6)-c_2s_5c_6 = 1$ $c_1[-c_2(c_4c_5s_6 + s_4c_6) + s_2s_5s_6] - s_1(-s_4c_5s_6 + c_4c_6) = 1$ $s_1[-c_2(c_4c_5s_6 + s_4c_6) + s_2s_5s_6] + c_1(-s_4c_5s_6 + c_4c_6) = 0$ $s_2(c_4c_5s_6 + s_4c_6) + c_2s_5s_6 = 0$ $c_1(c_2c_4s_5 + s_2c_5) - s_1s_4s_5 = 0$ $s_1(c_2c_4s_5 + s_2c_5) + c_1s_4s_5 = 1$ $-s_2c_4s_5 + c_2c_5 = 0$ $c_1 s_2 d_3 - s_1 d_2 + d_6 (c_1 c_2 c_4 s_5 + c_1 c_5 s_2 - s_1 s_4 s_5) = -0.154$ $s_1 s_2 d_3 + c_1 d_2 + d_6 (c_1 s_4 s_5 + c_2 c_4 s_1 s_5 + c_5 s_1 s_2) = 0.763$ $c_2d_3 + d_6(c_2c_5 - c_4s_2s_5) = 0$

If the values of the nonzero DH parameters are $d_2 = 0.154$ and $d_6 = 0.263$, one solution to this set of equations is given by:

$ heta_1$	$= \tau$	τ/2	, 6)2 =	$=\pi/2,$	$d_3 =$	0.5,	$\theta_4 = \pi/2$	2,	$\theta_5 = 0$, θ_6	$= \tau$	$\tau/2$
	DH b	bara	mete	rs									
f	or S ⁄Ian	ipul;	ford ator		c_1	$[c_2(c_4c_5c_6)]$	$6 - s_4 s_6$	$(s_{5}) - s_{2}s_{5}c_{6}]$	$-s_{1}$	$(s_4c_5c_6 +$	$-c_4s_6)$	=	0
Link	d_i	a_i	α_i	θ_i	s_{1}	$\left[c_2(c_4c_5c_4)\right]$	$6 - s_4 s_6$	$(s_6) - s_2 s_5 c_6]$	$+ c_{1}$	$(s_4c_5c_6 +$	$-c_4s_6)$	=	0
1	0	0	-90	<i>θ</i> *				$-s_2(c_4c_5)$	$5c_{6} -$	$s_4s_6\bigr)-\\$	$c_2 s_5 c_6$	=	1
2	d_2	0	+90	θ^{\star}	$c_1[-a]$	$c_2(c_4c_5s_6 -$	$+ s_4 c_6)$	$+ s_2 s_5 s_6] -$	$-s_1(-$	$-s_4c_5s_6 +$	$-c_4c_6)$	=	1
3 4	$\begin{array}{c} a \\ 0 \end{array}$	0	-90	θ^{\star}	$s_1[-a]$	$c_2(c_4c_5s_6$	$+ s_4 c_6)$	$+ s_2 s_5 s_6] +$	$-c_1(-$	$-s_4c_5s_6 +$	$-c_4c_6)$	=	0
5 6	0 de	0 0	$^{+90}_{0}$	θ^{\star} θ^{\star}				$s_2(c_4c_5)$	$5s_6 +$	$(s_4c_6) +$	$c_2 s_5 s_6$	=	0
								$c_1(c_2c_4)$	$4s_5 +$	$s_2c_5) - $	$s_{1}s_{4}s_{5}$	=	0
								$s_1(c_2c_4)$	$4s_5 +$	$(s_2c_5) +$	$c_{1}s_{4}s_{5}$	=	1
										$-s_2c_4s_5$	$+ c_2 c_5$	=	0
						$c_1 s_2 d_3 -$	$s_1d_2 +$	$d_6(c_1c_2c_4s_5)$	$5 + c_1$	$c_5s_2 - s_2$	$(1s_4s_5)$	=	-0.154
						$s_1 s_2 d_3 +$	$c_1d_2 +$	$d_6(c_1s_4s_5 +$	$+ c_2 c_4$	$_{1}s_{1}s_{5}+c_{5}$	$(s_5 s_1 s_2)$	=	0.763
								$c_{2}d_{3}$	$+ d_{6}$	$(c_2 c_5 - c_5)$	$(4s_2s_5)$	=	0

Kinematic Decoupling

Inverse Position: A Geometric Approach Articulated Configuration

Inverse Position: A Geometric Approach Articulated Configuration

Atan vs Atan2

Atan

- Returns the principal value of the arc tangent of x, expressed in radians.
- Notice that because of the sign ambiguity, the function cannot determine with certainty in which quadrant the angle falls only by its tangent value.
- Principal arc tangent of x, in the interval [-pi/2,+pi/2] radians.

□ Atan2

- Returns the principal value of the arc tangent of y/x, expressed in radians.
- To compute the value, the function takes into account the sign of both arguments in order to determine the quadrant.
- Principal arc tangent of y/x, in the interval [-pi,+pi] radians.

	$\arctan(\frac{y}{x})$	x > 0
	$\arctan(\frac{y}{x}) + \pi$	$y \geq 0$, $x < 0$
$atan^{2}(u, r) = d$	$\arctan(\frac{y}{x}) - \pi$	y < 0 , $x < 0$
$\operatorname{atall2}(y,x) =$	$\frac{\pi}{2}$	$y>0\;,\;x=0$
	$-\frac{\pi}{2}$	$y<0\;,\;x=0$
	undefined	$y=0\ ,\ x=0$

Why θ 1 has two solutions?

Law of Cosines

Projecting onto the plane formed by links 2 and 3

- □ An example of an elbow manipulator with offsets is the PUMA
- □ There are four solutions to the inverse position kinematics as shown.
- The two solutions for θ3 correspond to the elbow-up position and elbowdown position, respectively

LEFT and BELOW Arm

RIGHT and BELOW Arm

Spherical Configuration

We next solve the inverse position kinematics for a three degree of freedom spherical manipulator

Spherical Configuration

We next solve the inverse position kinematics for a three degree of freedom spherical manipulator $\theta_1 = \operatorname{atan2}(x_c, y_c)$ z_0 $\theta_1 = \pi + \operatorname{atan2}(x_c, y_c)$ d_3 $\theta_2 = \operatorname{atan2}(r, s)$ z_c θ_{2} $r^2 = x_c^2 + y_c^2$ $s = z_c - d_1$ \mathbf{s} y_c y_0 θ_1 d_1 $\sqrt{r^2 + s^2}$ x_c $= \sqrt{x_c^2 + y_c^2 + (z_c - d_1)^2}$ x_0

SCARA Manipulator

SCARA Manipulator

We first note that, since the SCARA has only four degrees-of-freedom, not every possible H from SE(3) allows a solution.

$$T_4^0 = \begin{bmatrix} R & o \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} c_{12}c_4 + s_{12}s_4 & s_{12}c_4 - c_{12}s_4 & 0 & a_1c_1 + a_2c_{12} \\ s_{12}c_4 - c_{12}s_4 & -c_{12}c_4 - s_{12}s_4 & 0 & a_1s_1 + a_2s_{12} \\ 0 & 0 & -1 & -d_3 - d_4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

In fact we can easily see that there is no solution unless R is of the form

$$R = \begin{bmatrix} c_{\alpha} & s_{\alpha} & 0\\ s_{\alpha} & -c_{\alpha} & 0\\ 0 & 0 & -1 \end{bmatrix}$$

if this is the case

 $\theta_1 + \theta_2 - \theta_4 = \alpha = \operatorname{atan2}(r_{11}, r_{12})$

□ Projecting the manipulator configuration onto the x0 −y0 plane immediately yields the situation of Figure. We see from this that

