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Introduction

In the previous chapter we derived the forward and inverse
position equations relating

B joint positions to positions and orientations of end-effector
In this chapter we derive the velocity relationships, relating the

B joint velocities to linear and angular velocities of the end-
effector

The velocity relationships are then determined by the Jacobian of
forward kinematic equations

The Jacobian is a matrix that can be thought of as the vector
version of the ordinary derivative of a scalar function.

The Jacobian is one of the most important quantities in the
analysis and control of robot motion.




ANGULAR VELOCITY: THE FIXED AXIS CASE

[0 As the body rotates, a perpendicular from any point of the body to the

axis sweeps out an angle 6, and this angle is the same for every point of
the body.

0 If k is a unit vector in the direction of the axis of rotation, then the
angular velocity is given by

W= Ok V=w X T







[0 In this fixed axis case, the problem of specifying angular
displacements is really a planar problem, since each point
traces out a circle, Therefore, it is tempting to use 6 to
represent the angular velocity.

[0 However, as we have already seen in Chapter 2, this choice
does not generalize to the three-dimensional case, either
B when the axis of rotation is not fixed, or
B when the angular velocity is the result of multiple rotations about
distinct axes.
[0 Analogous to our development of rotation matrices we will
need to develop skew symmetric matrix.




Jacobian

[1 Jacobian relates the linear and angular velocity of
the end-effector to the vector of joint velocities

§ = Jq

0 J
=[] =

0 For an n-link manipulator Jacobian is of the form

)T — []1]2 - *]?1:




Linear part of Jacobian

[0 The upper half of the
Jacobian J, is given as

-..}r-g_" — [*]'I.H C *'}r'a"n]

[0 where the i-th column
J,i IS L0

;o) Fi-l X (onp, —o0;—1) for revolute joint z

o Zi1 for prismatic joint ¢



Angular part of Jacobian

0 The lower half of the
Jacobian J,, is given as

T = [T, T ]

L/ W n

[0 where the i-th column
i IS Lo

J, =

T

0  for prismatic joint 2

{ zi_1 Tfor revolute joint 2



Two-Link Planar Robot Arm

Y2 L3
00 The coordinates (x, y) of the tool are “0 \/
= &9 = aqC0sH; + ascos(fy + 6s) Y1

L .
a2 -~
y = y2 = aisinfy + assin(fy + 02) ‘-\_H _,’;',;_,\-\-gg_f__,.f--f T
.H-. R , .; /ff_,__f.--'
a1 .J-,:"._f.-"’
[0 Differentiate equations above to »flﬁ
obtain the relationship between the X S : - g
velocity of the tool and the joint /| |
velocities. _ ' ' g
— —] Sin 91 . 91 — (Y9 5111(91 -+ 82)(91 + 92)
Ej — (¥1 COS 91 . 91 - (X9 CDb’(Ql T 92)(91 —+ 92)
. —qqsinfy — agsin(fy + 03)  —agsin(fy + #s) —
A —

(vp cos By + aa cos(fy + bBs) (v cos(#1 + 603)



Two-Link Planar Robot Arm

Y2 L2
0 Using the vector notation v \/
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[0 The angular speed of tool is



Derivation of Jacobian for
Two-Link Planar Robot Arm

[0 Since there are two joints size of Jacobian
matrix must be 6 x 2

[0 Since the joints are revolute, form of the
Jacobian must be
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Derivation of Jacobian for
Two-Link Planar Robot Arm

[0 Performing the required calculations then

yields
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Example 4.6
Jacobian for an Arbitrary Point

[0 Consider the three-link planar manipulator.

[0 To compute the linear velocity v and the angular velocity w of the center

of link 2 as shown.

Zo X ((}_— OU) Z1 X (0. — (3'1) 0
J (fj) — - ) ;-C 0




Link 6
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Link 4
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Stanford Manipulator
With A Spherical Wrist Joint 6
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DH parameters for Stanford Manipulator
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Derivation of Jacobian
|
[0 Note that o1=02, joint 3 is s (0n — O
prismatic and that 03 = 04 =05 J; = 2im1 % (06 = 0i1) ] 1 =1,2
as a consequence of the :
spherical wrist and the frame - ]

assignment. Js =
[0 First, oj is given by the first :
three entries of the last column
of Tj°= Al - - -:Aj, with 00 = (O,
0, 0)T = ol.
[0 The vector z; is given .
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The z; are given as

<0

Z2

<4

0 — 81

0 Z1 = Ci

1 0

189 C152

5152 <3 = S152
Co Co

—C1C984 — §1C4
—S81C2584 + C1C4
S254

€1C2C485 — §18485 + €152C5
§1CoCy 85 + C18485 + §189C5
—82C4S5 + C2C5



SCARA Manipulator
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The SCARA (Selective Compliant
The Epson E2L653S SCARA Robot Articulated Robot for Assembly).




DH parameters for SCARA

Link | a; | o | d; | &;

i1 0 0 | &
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forward kinematic equations
Ay Ay

Ty

C12C4 + 81984 —ci984 + S92 0 aqey + aacys
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Link | a; | «a; | d; | 6
1 a1 0 0 | a8
Derivation of Jacobian For il B e I
L
SCARA Manipulator 4 o] 0 [de
This Jacobian is a 6 x 4 matrix since the SCARA T o —s1 0 are
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Simalarly zo = zy = k, and zo = z3 = —k. Therefore the Jacobian of the
SCARA Manipulator is
I —@181 —a2812 —A2512 |
a1c1 + asc12 a2C12
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