VELOCITY KINEMATICS THE MANIPULATOR JACOBIAN

Dr. Kurtuluş Erinç Akdoğan
kurtuluserinc@cankaya.edu.tr

ÇANKAYA ÜNIVERSITTESI
MEKATRONIK MÜHENDISLIĞI BÖLÖMÜ

Introduction

\square In the previous chapter we derived the forward and inverse position equations relating

- joint positions to positions and orientations of end-effector
\square In this chapter we derive the velocity relationships, relating the
- joint velocities to linear and angular velocities of the endeffector
\square The velocity relationships are then determined by the Jacobian of forward kinematic equations
\square The Jacobian is a matrix that can be thought of as the vector version of the ordinary derivative of a scalar function.
\square The Jacobian is one of the most important quantities in the analysis and control of robot motion.

ANGULAR VELOCITY: THE FIXED AXIS CASE

\square As the body rotates, a perpendicular from any point of the body to the axis sweeps out an angle θ, and this angle is the same for every point of the body.
\square If k is a unit vector in the direction of the axis of rotation, then the angular velocity is given by

\square In this fixed axis case, the problem of specifying angular displacements is really a planar problem, since each point traces out a circle, Therefore, it is tempting to use $\dot{\theta}$ to represent the angular velocity.
\square However, as we have already seen in Chapter 2, this choice does not generalize to the three-dimensional case, either - when the axis of rotation is not fixed, or

- when the angular velocity is the result of multiple rotations about distinct axes.
\square Analogous to our development of rotation matrices we will need to develop skew symmetric matrix.

Jacobian

\square Jacobian relates the linear and angular velocity of the end-effector to the vector of joint velocities

$$
\begin{gathered}
\xi=J \dot{q} \\
\left.\xi=\left[\begin{array}{c}
v_{n}^{0} \\
\omega_{n}^{0}
\end{array}\right] \quad \begin{array}{l}
\\
\\
J_{v} \\
J_{\omega}
\end{array}\right]
\end{gathered}
$$

\square For an n-link manipulator Jacobian is of the form

$$
J=\left[J_{1} J_{2} \cdots J_{n}\right]
$$

Linear part of Jacobian

\square The upper half of the Jacobian $\mathbf{J}_{\mathbf{v}}$ is given as

$$
J_{v}=\left[J_{v_{1}} \cdots J_{v_{n}}\right]
$$

\square where the i-th column J_{vi} is

for revolute joint i for prismatic joint i

Angular part of Jacobian

$$
\omega \equiv z_{i-1} \uparrow
$$

\square The lower half of the Jacobian $\mathbf{J}_{\mathbf{w}}$ is given as
$J_{\omega}=\left[J_{\omega_{1}} \cdots J_{\omega_{n}}\right]$
\square where the i-th column $\mathbf{J}_{\mathbf{w i}}$ is

$J_{\omega_{i}}=\left\{\begin{array}{cl}z_{i-1} & \text { for revolute joint } i \\ 0 & \text { for prismatic joint } i\end{array}\right.$

Two-Link Planar Robot Arm

\square The coordinates (x, y) of the tool are

$$
\begin{aligned}
x & =x_{2}=\alpha_{1} \cos \theta_{1}+\alpha_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
y & =y_{2}=\alpha_{1} \sin \theta_{1}+\alpha_{2} \sin \left(\theta_{1}+\theta_{2}\right)
\end{aligned}
$$

\square Differentiate equations above to obtain the relationship between the velocity of the tool and the joint velocities.

$$
\begin{aligned}
& \dot{x}=-\alpha_{1} \sin \theta_{1} \cdot \dot{\theta}_{1}-\alpha_{2} \sin \left(\theta_{1}+\theta_{2}\right)\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \\
& \dot{y}=\alpha_{1} \cos \theta_{1} \cdot \dot{\theta}_{1}+\alpha_{2} \cos \left(\theta_{1}+\theta_{2}\right)\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)
\end{aligned}
$$

$$
\dot{x}=\left[\begin{array}{cc}
-\alpha_{1} \sin \theta_{1}-\alpha_{2} \sin \left(\theta_{1}+\theta_{2}\right) & -\alpha_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\
\alpha_{1} \cos \theta_{1}+\alpha_{2} \cos \left(\theta_{1}+\theta_{2}\right) & \alpha_{2} \cos \left(\theta_{1}+\theta_{2}\right)
\end{array}\right] \dot{\theta}
$$

Two-Link Planar Robot Arm

\square Using the vector notation

$$
\boldsymbol{v}=\left[\begin{array}{c}
\dot{x} \\
\dot{y}
\end{array}\right] \text { and } \theta=\left[\begin{array}{c}
\theta_{1} \\
\theta_{2}
\end{array}\right]
$$

$$
\dot{x}=-\alpha_{1} \sin \theta_{1} \cdot \dot{\theta}_{1}-\alpha_{2} \sin \left(\theta_{1}+\theta_{2}\right)\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)
$$

$$
\dot{y}=\alpha_{1} \cos \theta_{1} \cdot \dot{\theta}_{1}+\alpha_{2} \cos \left(\theta_{1}+\theta_{2}\right)\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)
$$

$\boldsymbol{v}=\left[\begin{array}{cc}-\alpha_{1} \sin \theta_{1}-\alpha_{2} \sin \left(\theta_{1}+\theta_{2}\right) & -\alpha_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\ \alpha_{1} \cos \theta_{1}+\alpha_{2} \cos \left(\theta_{1}+\theta_{2}\right) & \alpha_{2} \cos \left(\theta_{1}+\theta_{2}\right)\end{array}\right] \dot{\theta}=J_{v} \dot{\theta}$
\square The angular speed of tool is
$w=\dot{\theta}_{1}+\dot{\theta}_{2}=J_{\omega} \dot{\theta}$

Derivation of Jacobian for Two-Link Planar Robot Arm

\square Since there are two joints size of Jacobian matrix must be 6×2
\square Since the joints are revolute, form of the Jacobian must be

$$
J(q)=\left[\begin{array}{cc}
z_{0} \times\left(o_{2}-o_{0}\right) & z_{1} \times\left(o_{2}-o_{1}\right) \\
z_{0} & z_{1}
\end{array}\right]
$$

$$
z_{0}=z_{1}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Derivation of Jacobian for Two-Link Planar Robot Arm

\square Performing the required calculations then yields

$$
J=\left[\begin{array}{cc}
-a_{1} s_{1}-a_{2} s_{12} & -a_{2} s_{12} \\
a_{1} c_{1}+a_{2} c_{12} & a_{2} c_{12} \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right]
$$

Example 4.6 Jacobian for an Arbitrary Point

\square Consider the three-link planar manipulator.
\square To compute the linear velocity v and the angular velocity w of the center of link 2 as shown.

$$
J(q)=\left[\begin{array}{ccc}
z_{0} \times\left(o_{c}-o_{0}\right) & z_{1} \times\left(o_{c}-o_{1}\right) & 0 \\
z_{0} & z_{1} & 0
\end{array}\right]
$$

Stanford Manipulator With A Spherical Wrist

$$
\begin{aligned}
r_{11} & =c_{1}\left[c_{2}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-s_{2} s_{5} c_{6}\right]-d_{2}\left(s_{4} c_{5} c_{6}+c_{4} s_{6}\right) \\
r_{21} & =s_{1}\left[c_{2}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-s_{2} s_{5} c_{6}\right]+c_{1}\left(s_{4} c_{5} c_{6}+c_{4} s_{6}\right) \\
r_{31} & =-s_{2}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-c_{2} s_{5} c_{6} \\
r_{12} & =c_{1}\left[-c_{2}\left(c_{4} c_{5} s_{6}+s_{4} c_{6}\right)+s_{2} s_{5} s_{6}\right]-s_{1}\left(-s_{4} c_{5} s_{6}+c_{4} c_{6}\right) \\
r_{22} & =-s_{1}\left[-c_{2}\left(c_{4} c_{5} s_{6}+s_{4} c_{6}\right)+s_{2} s_{5} s_{6}\right]+c_{1}\left(-s_{4} c_{5} s_{6}+c_{4} c_{6}\right) \\
r_{32} & =s_{2}\left(c_{4} c_{5} s_{6}+s_{4} c_{6}\right)+c_{2} s_{5} s_{6} \\
r_{13} & =c_{1}\left(c_{2} c_{4} s_{5}+s_{2} c_{5}\right)-s_{1} s_{4} s_{5} \\
r_{23} & =s_{1}\left(c_{2} c_{4} s_{5}+s_{2} c_{5}\right)+c_{1} s_{4} s_{5} \\
r_{33} & =-s_{2} c_{4} s_{5}+c_{2} c_{5} \\
d_{x} & =c_{1} s_{2} d_{3}-s_{1} d_{2}++d_{6}\left(c_{1} c_{2} c_{4} s_{5}+c_{1} c_{5} s_{2}-s_{1} s_{4} s_{5}\right) \\
d_{y} & =s_{1} s_{2} d_{3}+c_{1} d_{2}+d_{6}\left(c_{1} s_{4} s_{5}+c_{2} c_{4} s_{1} s_{5}+c_{5} s_{1} s_{2}\right) \\
d_{z} & =c_{2} d_{3}+d_{6}\left(c_{2} c_{5}-c_{4} s_{2} s_{5}\right)
\end{aligned}
$$

Derivation of Jacobian

ㅁ Note that $01=02$, joint 3 is prismatic and that $03=04=05$ as a consequence of the spherical wrist and the frame assignment.
\square First, oj is given by the first

$$
J_{3}=\left[\begin{array}{c}
z_{2} \\
0
\end{array}\right]
$$ three entries of the last column

$$
J_{i}=\left[\begin{array}{c}
z_{i-1} \times\left(o_{6}-o_{i-1}\right) \\
z_{i-1}
\end{array}\right] \quad i=1,2
$$ of $T_{j}^{0}=A 1 \cdots A j$, with $00=(0$, $0,0)^{\top}=01$.

\square The vector z_{j} is given

$$
z_{j}=R_{j}^{0} k
$$

$$
\begin{aligned}
o_{6} & =\left[\begin{array}{c}
c_{1} s_{2} d_{3}-s_{1} d_{2}+d_{6}\left(c_{1} c_{2} c_{4} s_{5}+c_{1} c_{5} s_{2}-s_{1} s_{4} s_{5}\right) \\
s_{1} s_{2} d_{3}-c_{1} d_{2}+d_{6}\left(c_{1} s_{4} s_{5}+c_{2} c_{4} s_{1} s_{5}+c_{5} s_{1} s_{2}\right) \\
c_{2} d_{3}+d_{6}\left(c_{2} c_{5}-c_{4} s_{2} s_{5}\right)
\end{array}\right] \\
o_{3} & =\left[\begin{array}{c}
c_{1} s_{2} d_{3}-s_{1} d_{2} \\
s_{1} s_{2} d_{3}+c_{1} d_{2} \\
c_{2} d_{3}
\end{array}\right]
\end{aligned}
$$

The z_{i} are given as

$$
\left.\begin{array}{rl}
z_{0}= & {\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]} \\
z_{2} & =\left[\begin{array}{c}
c_{1} s_{2} \\
s_{1} s_{2} \\
c_{2}
\end{array}\right] \quad z_{1}=\left[\begin{array}{c}
-s_{1} \\
c_{1} \\
0
\end{array}\right] \\
z_{4}=\left[\begin{array}{c}
-c_{1} c_{2} s_{4}-s_{1} c_{4} \\
s_{1} s_{2} \\
c_{2}
\end{array}\right] \\
z_{5}=\left[\begin{array}{c}
s_{1} c_{2} s_{4}+c_{1} c_{4} \\
s_{2} s_{4}
\end{array}\right] \\
c_{1} c_{2} c_{4} s_{5}-s_{1} s_{4} s_{5}+c_{1} s_{2} c_{5} \\
s_{1} c_{2} c_{4} s_{5}+c_{1} s_{4} s_{5}+s_{1} s_{2} c_{5} \\
-s_{2} c_{4} s_{5}+c_{2} c_{5}
\end{array}\right] .
$$

SCARA Manipulator

The Epson E2L653S SCARA Robot

The SCARA (Selective Compliant Articulated Robot for Assembly).

A_{1}

Derivation of Jacobian For SCARA Manipulator

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1	a_{1}	0	0	θ^{\star}
2	a_{2}	180	0	θ^{\star}
3	0	0	d^{\star}	0
4	0	0	d_{4}	θ^{\star}

- This Jacobian is a 6×4 matrix since the SCARA has only four degrees-of freedom.
$\mathrm{o}_{0}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]^{\top}, \mathrm{o}_{1}=$?, $\mathrm{o}_{2}=$?, $\mathrm{o}_{4}=$?
$A_{1}=\left[\begin{array}{cccc}c_{1} & -s_{1} & 0 & a_{1} c_{1} \\ s_{1} & c_{1} & 0 & a_{1} s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ matrix

$$
o_{1}=\left[\begin{array}{c}
a_{1} c_{1} \\
a_{1} s_{1} \\
0
\end{array}\right]
$$

$$
A_{2}=
$$

$\square O_{2}$ is the first three elements of last column of

$$
\left[\begin{array}{cccc}
c_{2} & s_{2} & 0 & a_{2} c_{2} \\
s_{2} & -c_{2} & 0 & a_{2} s_{2} \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$ $T_{2}^{0}=A_{1} A_{2}$

$$
o_{2}=\left[\begin{array}{c}
a_{1} c_{1}+a_{2} c_{12} \\
a_{1} s_{1}+a_{2} s_{12} \\
0
\end{array}\right]
$$

$\square o_{1}$ is the first three elements of last column of A_{1}

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
T_{4}^{0}=A_{1} \cdots A_{4}
$$

$$
=\left[\begin{array}{cccc}
c_{12} c_{4}+s_{12} s_{4} & -c_{12} s_{4}+s_{12} c_{4} & 0 & a_{1} c_{1}+a_{2} c_{12} \\
s_{12} c_{4}-c_{12} s_{4} & -s_{12} s_{4}-c_{12} c_{4} & 0 & a_{1} s_{1}+a_{2} s_{12} \\
0 & 0 & -1 & -d_{3}-d_{4} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Similarly $z_{0}=z_{1}=k$, and $z_{2}=z_{3}=-k$. Therefore the Jacobian of the SCARA Manipulator is

$$
J=\left[\begin{array}{ccrr}
-a_{1} s_{1}-a_{2} s_{12} & -a_{2} s_{12} & 0 & 0 \\
a_{1} c_{1}+a_{2} c_{12} & a_{2} c_{12} & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & -1
\end{array}\right]
$$

